Author:
Feller Peter,Lewark Lukas
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Mathematics
Reference38 articles.
1. Baader, S.: On the stable 4-genus of knots with indefinite Seifert form. Commun. Anal. Geom. 24(2), 301–305 (2016).
arXiv:1408.6091
2. Baader, S., Feller, P., Lewark, L., Liechti, L.: On the topological 4-genus of torus knots. Trans. Am. Math. Soc. 370(4), 2639–2656 (2018).
arXiv:1509.07634
3. Baader, S., Lewark, L.: The stable 4-genus of alternating knots. Asian J. Math. (6), 1183–1190 (2017).
arXiv:1505.03345
4. Borodzik, M., Friedl, S.: Knotorious world wide web page.
http://www.mimuw.edu.pl/~mcboro/knotorious.php
, retrieved November 8 (2016)
5. Borodzik, M., Friedl, S.: On the algebraic unknotting number. Trans. Lond. Math. Soc. 1(1), 57–84 (2014).
arXiv:1308.6105
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Unknotting via null-homologous twists and multitwists;Pacific Journal of Mathematics;2024-07-22
2. 3-braid knots with maximal 4-genus;Transactions of the American Mathematical Society, Series B;2024-02-27
3. The topological slice genus of satellite knots;Algebraic & Geometric Topology;2022-08-03
4. The $$\mathbb Z$$-genus of boundary links;Revista Matemática Complutense;2022-04-15
5. A Note on the Concordance Z-Genus;Michigan Mathematical Journal;2022-01-01