Abstract
AbstractWe study the motivic and$$\ell $$ℓ-adic realizations of the dg category of singularities of the zero locus of a global section of a line bundle over a regular scheme. We will then use the formula obtained in this way together with a theorem due to D. Orlov and J. Burke–M. Walker to give a formula for the$$\ell $$ℓ-adic realization of the dg category of singularities of the zero locus of a global section of a vector bundle. In particular, we obtain a formula for the$$\ell $$ℓ-adic realization of the dg category of singularities of the special fiber of a scheme over a regular local ring of dimensionn.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Mathematics
Reference69 articles.
1. Auslander, M., Buchsbaum, D.A.: Homological dimension in Noetherian rings. Proc. Nat. Acad. Sci. U.S.A. 42, 36–38 (1956)
2. Abramovich, D., Graber, T., Vistoli, A.: Gromov–Witten theory of Deligne–Mumford stacks. Am. J. Math. 130(5), 1337–1398 (2008)
3. André, M.: Homologie des Algèbres Commutatives. Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (1974)
4. Ayoub, J.: Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique, I. Astérisque, Vol. 314, Société Math. France (2007)
5. Ayoub, J.: Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique, II. Astérisque, Vol. 315, Société Math. France (2007)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献