Author:
Lindsay Nicholas,Panov Dmitri
Abstract
AbstractWe show that there exist symplectic structures on a $$\mathbb {CP}^1$$
CP
1
-bundle over $$\mathbb {CP}^2$$
CP
2
that do not admit a compatible Kähler structure. These symplectic structures were originally constructed by Tolman and they have a Hamiltonian $${\mathbb {T}}^2$$
T
2
-symmetry. Tolman’s manifold was shown to be diffeomorphic to a $$\mathbb CP^1$$
C
P
1
-bundle over $$\mathbb {CP}^{2}$$
CP
2
by Goertsches, Konstantis, and Zoller. The proof of our result relies on Mori theory, and on classical facts about holomorphic vector bundles over $$\mathbb {CP}^{2}$$
CP
2
.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Mathematics
Reference33 articles.
1. Atiyah, M., Bott, R.: The moment map and equivariant cohomology. Topology 23, 1–28 (1984)
2. Beauville, A.: The Lüroth problem. Rationality Problems in Algebraic Geometry, Springer Lecture Notes, vol. 2172, pp. 1–27 (2016)
3. Besse, A.L.: Einstein Manifolds. Spinger, Berlin (1987)
4. Blanchard, A.: Sur les variétés analytiques complexes. Ann. Sci. Ecole Norm. Sup. 3(73), 157–202 (1956)
5. Berline, N., Vergne, M.: Classes caracteristiques equivariantes. Formule de localisation en cohomologie equivariante. C. R. Acad. Sci. Paris 295, 539–541 (1982)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Hamiltonian circle actions on complete intersections;Bulletin of the London Mathematical Society;2022-02