Algebraic foliations and derived geometry: the Riemann–Hilbert correspondence

Author:

Toën Bertrand,Vezzosi Gabriele

Abstract

AbstractThis is the first in a series of papers about foliations in derived geometry. After introducing derived foliations on arbitrary derived stacks, we concentrate on quasi-smooth and rigid derived foliations on smooth complex algebraic varieties and on their associated formal and analytic versions. Their truncations are classical singular foliations defined in terms of differential ideals in the algebra of forms. We prove that a quasi-smooth rigid derived foliation on a smooth complex variety X is formally integrable at any point, and, if we suppose that its singular locus has codimension $$\ge 2$$ 2 , its analytification is a locally integrable singular foliation on the associated complex manifold $$X^h$$ X h . We then introduce the derived category of perfect crystals on a quasi-smooth rigid derived foliation on X, and prove a Riemann-Hilbert correspondence for them when X is proper. We discuss several examples and applications.

Funder

Università degli Studi di Firenze

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Mathematics

Reference23 articles.

1. Ayoub, J.: Topologie feuilletée et théorie de Galois différentielle. Preprint available at http://user.math.uzh.ch/ayoub/, (2018)

2. Baum, P.: Structure of foliation singularities. Adv. Math. 15, 361–374 (1975)

3. Borisov, D., Sheshmani, A., Yau, S.-T.: Global shifted potentials for moduli spaces of sheaves on cy4. Preprint arXiv:1908.00651, (2019)

4. Bolsinov, A.V., Zuev, K.M.: The formal Frobenius theorem and the argument shift method. Mat. Zametki 86(1), 3–13 (2009)

5. Calaque, D., Grivaux, J.: Formal moduli problems and formal derived stacks. Preprint arXiv:1802.09556, (2018)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3