Relative poset polytopes and semitoric degenerations

Author:

Feigin Evgeny,Makhlin Igor

Abstract

AbstractThe two best studied toric degenerations of the flag variety are those given by the Gelfand–Tsetlin and FFLV polytopes. Each of them degenerates further into a particular monomial variety which raises the problem of describing the degenerations intermediate between the toric and the monomial ones. Using a theorem of Zhu one may show that every such degeneration is semitoric with irreducible components given by a regular subdivision of the corresponding polytope. This leads one to study the parts that appear in such subdivisions as well as the associated toric varieties. It turns out that these parts lie in a certain new family of poset polytopes which we term relative poset polytopes: each is given by a poset and a weakening of its order relation. In this paper we give an in depth study of (both common and marked) relative poset polytopes and their toric varieties in the generality of an arbitrary poset. We then apply these results to degenerations of flag varieties. We also show that our family of polytopes generalizes the family studied in a series of papers by Fang, Fourier, Litza and Pegel while sharing their key combinatorial properties such as pairwise Ehrhart-equivalence and Minkowski-additivity.

Funder

Technische Universität Berlin

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3