Abstract
AbstractIn this work, we establish a categorification of the classical Dold-Kan correspondence in the form of an equivalence between suitably defined $$\infty $$
∞
-categories of simplicial stable $$\infty $$
∞
-categories and connective chain complexes of stable $$\infty $$
∞
-categories. The result may be regarded as a contribution to the foundations of an emerging subject that could be termed categorified homological algebra.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Mathematics
Reference17 articles.
1. Abellán García, F., Dyckerhoff, T., Stern, W.: A relative 2-nerve. (2019) arXiv:1910.06223 to appear in Algebr. Geom. Topol
2. Bondal, A., Kapranov, M.: Representable functors, Serre functors, and mutations. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 53(6), 1183–1205 (1989)
3. Dyckerhoff, Tobias, Jasso, Gustavo, Walde, Tashi: Simplicial structures in higher Auslander-Reiten theory. Adv. Math. 355, 106762 (2019)
4. Dyckerhoff, Tobias, Kapranov, Mikhail: Triangulated surfaces in triangulated categories. J. Eur. Math. Soc. (JEMS) 20(6), 1473–1524 (2018)
5. Dyckerhoff, T., Kapranov, M., Schechtman, V., Soibelman, Y.: Topological Fukaya categories with coefficients. in preparation (2017)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献