Author:
Cléry Fabien,Faber Carel,van der Geer Gerard
Abstract
Abstract
We show how one can use the representation theory of ternary quartics to construct all vector-valued Siegel modular forms and Teichmüller modular forms of degree 3. The relation between the order of vanishing of a concomitant on the locus of double conics and the order of vanishing of the corresponding modular form on the hyperelliptic locus plays an important role. We also determine the connection between Teichmüller cusp forms on $$\overline{\mathcal {M}}_{g}$$
M
¯
g
and the middle cohomology of symplectic local systems on $${\mathcal {M}}_{g}\,$$
M
g
. In genus 3, we make this explicit in a large number of cases.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Mathematics
Reference40 articles.
1. Aluffi, P., Cukierman, F.: Multiplicities of discriminants. Manuscr. Math. 78, 245–258 (1993)
2. Bergström, J.: Cohomology of moduli spaces of curves of genus three via point counts. J. Reine Angew. Math. 622, 155–187 (2008)
3. Bergström, J., Faber, C., van der Geer, G.: Siegel modular forms of degree three and the cohomology of local systems. Selecta Math. (N.S.) 20(1), 83–124 (2014)
4. Bergström, J., Faber, C., van der Geer, G.: Siegel modular forms of degree two and three. (2017).
http://smf.compositio.nl
5. Chenevier, G., Lannes, J.: Automorphic forms and even unimodular lattices. Kneser Neighbors of Niemeier Lattices. Translated from the French by Reinie Erné. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 69. Springer, Cham, xxi+417 pp. (2019)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献