Abstract
AbstractWe prove that the moduli space of double covers ramified at two points $${\mathcal {R}}_{g,2}$$
R
g
,
2
is uniruled for $$3\le g\le 6$$
3
≤
g
≤
6
and of general type for $$g\ge 16$$
g
≥
16
. Furthermore, we consider Prym-canonical divisorial strata in the moduli space $$\overline{{\mathcal {C}}^n{\mathcal {R}}}_g$$
C
n
R
¯
g
parametrizing n-pointed Prym curves, and we compute their classes in $$\textrm{Pic}_{\mathbb {Q}}(\overline{{\mathcal {C}}^n{\mathcal {R}}}_g)$$
Pic
Q
(
C
n
R
¯
g
)
.
Funder
Johann Wolfgang Goethe-Universität, Frankfurt am Main
Publisher
Springer Science and Business Media LLC
Reference52 articles.
1. Abramovich, D., Corti, A., Vistoli, A.: Twisted bundles and admissible covers. Commun. Algebra 8, 3547–3618 (2003)
2. Aprodu, M., Farkas, G.: Green’s conjecture for general covers. Contemp. Math. 564, 211–226 (2012)
3. Arbarello, E., Cornalba, M.: The Picard groups of the moduli spaces of curves. Topology 26, 153–171 (1987)
4. Arbarello, E., Cornalba, M.: Calculating cohomology groups of moduli spaces of curves via algebraic geometry. Publ. Math. de l’Inst. des Hautes Études Sci. 88, 97–127 (1998)
5. Bainbridge, M., Chen, D., Gendron, Q., Grushevsky, S., Möller, M.: Strata of $$k$$-differentials. Algebr. Geom. 6, 196–233 (2019)