A polyfold proof of the Arnold conjecture

Author:

Filippenko Benjamin,Wehrheim Katrin

Abstract

AbstractWe give a detailed proof of the homological Arnold conjecture for nondegenerate periodic Hamiltonians on general closed symplectic manifolds M via a direct Piunikhin–Salamon–Schwarz morphism. Our constructions are based on a coherent polyfold description for moduli spaces of pseudoholomorphic curves in a family of symplectic manifolds degenerating from $${{\mathbb {C}}{\mathbb {P}}}^1\times M$$ C P 1 × M to $${{\mathbb {C}}}^+ \times M$$ C + × M and $${{\mathbb {C}}}^-\times M$$ C - × M , as developed by Fish–Hofer–Wysocki–Zehnder as part of the Symplectic Field Theory package. To make the paper self-contained we include all polyfold assumptions, describe the coherent perturbation iteration in detail, and prove an abstract regularization theorem for moduli spaces with evaluation maps relative to a countable collection of submanifolds. The 2011 sketch of this proof was joint work with Peter Albers, Joel Fish.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Mathematics

Reference39 articles.

1. Arnold, V.: Sur une propriété topologique des applications globalement canoniques de la mécanicque classique. C. R. Acad. Sci. Paris 261, 3719–3722 (1965)

2. Bourgeois, F., Eliashberg, Y., Hofer, H., Wysocki, K., Zehnder, E.: Compact. Results Symp. Field Theory Geom. Topol. 7, 799–888 (2003)

3. Burghelea, D., Haller, S.: On the topology and analysis of a closed one form I. Monogr. Enseign. Math. 38, 133–175 (2001)

4. Cieliebak, K., Mohnke, K.: Compactness for punctured holomorphic curves. J. Symp. Geom. 3(4), 589–654 (2005)

5. Cieliebak, K., Mohnke, K.: Symplectic hypersurfaces and transversality in Gromov–Witten theory. J. Symplectic Geom. 5(3), 281–356 (2007)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The strong closing lemma and Hamiltonian pseudo-rotations;Journal of Modern Dynamics;2024

2. On the cohomology ring of symplectic fillings;Algebraic & Geometric Topology;2023-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3