Author:
Aprodu Marian,Farkas Gavril,Raicu Claudiu,Weyman Jerzy
Abstract
AbstractWe discuss various applications of a uniform vanishing result for the graded components of the finite length Koszul module associated to a subspace $$K\subseteq \bigwedge ^2 V$$
K
⊆
⋀
2
V
, where V is a vector space. Previously Koszul modules of finite length have been used to give a proof of Green’s Conjecture on syzygies of generic canonical curves. We now give applications to effective stabilization of cohomology of thickenings of algebraic varieties, divisors on moduli spaces of curves, enumerative geometry of curves on K3 surfaces and to skew-symmetric degeneracy loci. We also show that the instability of sufficiently positive rank 2 vector bundles on curves is governed by resonance and give a splitting criterion.
Funder
Humboldt-Universität zu Berlin
Publisher
Springer Science and Business Media LLC
Reference38 articles.
1. Aprodu, M., Farkas, G., Papadima, S., Raicu, C., Weyman, J.: Koszul modules and Green’s conjecture. Inventiones Math. 218, 657–720 (2019)
2. Aprodu, M., Farkas, G., Papadima, S., Raicu, C., Weyman, J.: Topological invariants of groups and Koszul modules. Duke Math. J. 171(10), 2013–2046 (2022)
3. Aprodu, M., Farkas, G., Raicu, C., Suciu, A.: Reduced resonance schemes and Chen ranks. arXiv:2303:07855
4. Arbarello, E., Bruno, A., Sernesi, E.: Mukai’s program for curves on a $$K3$$ surface. Algebraic Geom. 1, 532–557 (2014)
5. Arbarello, E., Bruno, A., Sernesi, E.: On hyperplane sections of $$K3$$ surfaces. Algebraic Geom. 4, 562–596 (2017)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Reduced resonance schemes and Chen ranks;Journal für die reine und angewandte Mathematik (Crelles Journal);2024-07-23