Author:
Schmitt Johannes,van Zelm Jason
Abstract
AbstractFor a finite group G, let $$\overline{\mathcal {H}}_{g,G,\xi }$$
H
¯
g
,
G
,
ξ
be the stack of admissible G-covers $$C\rightarrow D$$
C
→
D
of stable curves with ramification data $$\xi $$
ξ
, $$g(C)=g$$
g
(
C
)
=
g
and $$g(D)=g'$$
g
(
D
)
=
g
′
. There are source and target morphisms $$\phi :\overline{\mathcal {H}}_{g,G,\xi }\rightarrow \overline{\mathcal {M}}_{g,r}$$
ϕ
:
H
¯
g
,
G
,
ξ
→
M
¯
g
,
r
and $$\delta :\overline{\mathcal {H}}_{g,G,\xi }\rightarrow \overline{\mathcal {M}}_{g',b}$$
δ
:
H
¯
g
,
G
,
ξ
→
M
¯
g
′
,
b
, remembering the curves C and D together with the ramification or branch points of the cover respectively. In this paper we study admissible cover cycles, i.e. cycles of the form $$\phi _* [\overline{\mathcal {H}}_{g,G,\xi }]$$
ϕ
∗
[
H
¯
g
,
G
,
ξ
]
. Examples include the fundamental classes of the loci of hyperelliptic or bielliptic curves C with marked ramification points. The two main results of this paper are as follows: firstly, for the gluing morphism $$\xi _A:\overline{\mathcal {M}}_A\rightarrow \overline{\mathcal {M}}_{g,r}$$
ξ
A
:
M
¯
A
→
M
¯
g
,
r
associated to a stable graph A we give a combinatorial formula for the pullback $$\xi ^*_A \phi _*[\overline{\mathcal {H}}_{g,G,\xi }]$$
ξ
A
∗
ϕ
∗
[
H
¯
g
,
G
,
ξ
]
in terms of spaces of admissible G-covers and $$\psi $$
ψ
classes. This allows us to describe the intersection of the cycles $$\phi _*[\overline{\mathcal {H}}_{g,G,\xi }]$$
ϕ
∗
[
H
¯
g
,
G
,
ξ
]
with tautological classes. Secondly, the pull–push $$\delta _*\phi ^*$$
δ
∗
ϕ
∗
sends tautological classes to tautological classes and we give an explicit combinatorial description of this map. We show how to use the pullbacks to algorithmically compute tautological expressions for cycles of the form $$\phi _* [\overline{\mathcal {H}}_{g,G,\xi }]$$
ϕ
∗
[
H
¯
g
,
G
,
ξ
]
. In particular, we compute the classes "Equation missing" and "Equation missing" of the hyperelliptic loci in $$\overline{\mathcal {M}}_5$$
M
¯
5
and $$\overline{\mathcal {M}}_6$$
M
¯
6
and the class "Equation missing" of the bielliptic locus in $$\overline{\mathcal {M}}_4$$
M
¯
4
.
Funder
Rheinische Friedrich-Wilhelms-Universität Bonn
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Mathematics
Reference48 articles.
1. Arbarello, E., Cornalba, M.: The Picard groups of the moduli spaces of curves. Topology 26(2), 153–171 (1987)
2. Arbarello, E., Cornalba, M.: Calculating cohomology groups of moduli spaces of curves via algebraic geometry. Inst. Hautes Études Sci. Publ. Math. 88(97–127), 1998 (1999)
3. Arbarello, E., Cornalba, M., Griffiths, P.: Geometry of Algebraic Curves, vol. II. Springer, Berlin (2011)
4. Abramovich, D., Corti, A., Vistoli, A.: Twisted bundles and admissible covers. Commun. Algebra 31(8), 3547–3618 (2003)
5. Bergström, J.: Cohomology of moduli spaces of curves of genus three via point counts. J. Reine Angew. Math. 622, 155–187 (2008)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献