Author:
Cheltsov Ivan,Dubouloz Adrien,Kishimoto Takashi
Abstract
AbstractWe study toric G-solid Fano threefolds that have at most terminal singularities, where G is an algebraic subgroup of the normalizer of a maximal torus in their automorphism groups. All varieties are assumed to be projective and defined over the field of complex numbers.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Mathematics
Reference33 articles.
1. Akhiezer, D.: Lie group actions in complex analysis, In: Vieweg, F. and Braunschweig, S. (1995)
2. Ahmadinezhad, H., Cheltsov, I., Park, J., Shramov, C.: Double Veronese cones with $$28$$ nodes, preprint, arXiv:1910.10533 (2019)
3. Ahmadinezhad, H., Okada, T.: Birationally rigid Pfaffian Fano 3-folds. Algebr. Geom. 5, 160–199 (2018)
4. Avilov, A.: Automorphisms of threefolds that can be represented as an intersection of two quadrics. Sbornik: Math. 207, 315–330 (2016)
5. Bayle, L.: Classification des varietes complexes projectives de dimension trois dont une section hyperplane generale est une surface d’Enriques. J. Reine Angew. Math. 449, 9–63 (1994)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. G-solid rational surfaces;European Journal of Mathematics;2024-05-17