Author:
Richmond Edward,Ṭarigradschi Mihail,Xu Weihong
Abstract
AbstractCominuscule flag varieties generalize Grassmannians to other Lie types. Schubert varieties in cominuscule flag varieties are indexed by posets of roots labeled long/short. These labeled posets generalize Young diagrams. We prove that Schubert varieties in potentially different cominuscule flag varieties are isomorphic as varieties if and only if their corresponding labeled posets are isomorphic, generalizing the classification of Grassmannian Schubert varieties using Young diagrams by the last two authors. Our proof is type-independent.
Publisher
Springer Science and Business Media LLC
Reference17 articles.
1. Buch, A.S., Chaput, P.-E., Mihalcea, L.C., Perrin, N.: A Chevalley formula for the equivariant quantum K-theory of cominuscule varieties. Algebr. Geom. 66, 568–595 (2018)
2. Buch, A.S., Chaput, P.-E., Mihalcea, L.C., Perrin, N.: Positivity of minuscule quantum K-theory (2022). arXiv:2205.08630 [math]
3. Brion, M., Polo, P.: Generic singularities of certain Schubert varieties. Mathematische Zeitschrift 231(2), 301–324 (1999)
4. Brion, M.: Lectures on the Geometry of Flag Varieties, Topics in Cohomological Studies of Algebraic Varieties, pp. 33–85 (2005)
5. Buch, A.S., Samuel, M.J.: K-theory of minuscule varieties. J. für die reine und angewandte Mathematik Crelles J. 719, 133–171 (2016)