Author:
Haslegrave John,Sidoravicius Vladas,Tournier Laurent
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Mathematics
Reference25 articles.
1. Arratia, R.: Site recurrence for annihilating random walks on $${\mathbf{Z}}_d$$. Ann. Probab. 11(3), 706–713 (1983)
2. Belitsky, V., Ferrari, P.A.: Ballistic annihilation and deterministic surface growth. J. Stat. Phys. 80(3–4), 517–543 (1995)
3. Ben-Naim, E., Redner, S., Leyvraz, F.: Decay kinetics of ballistic annihilation. Phys. Rev. Lett. 70(12), 1890–1893 (1993)
4. Benitez, L., Junge, M., Lyu, H., Redman, M., Reeves, L.: Three-velocity coalescing ballistic annihilation. arXiv preprint arXiv:2010.15855, (2020)
5. Bramson, M., Lebowitz, J.L.: Asymptotic behavior of densities for two-particle annihilating random walks. J. Stat. Phys. 62(1–2), 297–372 (1991)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Four-Parameter Coalescing Ballistic Annihilation;Journal of Statistical Physics;2024-07-17
2. Arrivals are universal in coalescing ballistic annihilation;Latin American Journal of Probability and Mathematical Statistics;2024
3. Reversible Poisson-Kirchhoff Systems;Bulletin de la Société mathématique de France;2023-05-31
4. Three-velocity coalescing ballistic annihilation;Electronic Journal of Probability;2023-01-01
5. Non-universality in clustered ballistic annihilation;Electronic Communications in Probability;2023-01-01