Abstract
AbstractWe introduce a derived representation scheme associated with a quiver, which may be thought of as a derived version of a Nakajima variety. We exhibit an explicit model for the derived representation scheme as a Koszul complex and by doing so we show that it has vanishing higher homology if and only if the moment map defining the corresponding Nakajima variety is flat. In this case we prove a comparison theorem relating isotypical components of the representation scheme to equivariant K-theoretic classes of tautological bundles on the Nakajima variety. As a corollary of this result we obtain some integral formulas present in the mathematical and physical literature since a few years, such as the formula for Nekrasov partition function for the moduli space of framed instantons on $$S^4$$
S
4
. On the technical side we extend the theory of relative derived representation schemes by introducing derived partial character schemes associated with reductive subgroups of the general linear group and constructing an equivariant version of the derived representation functor for algebras with a rational action of an algebraic torus.
Funder
Swiss Federal Institute of Technology Zurich
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Mathematics