Reliability of steel structures with Chevron bracing systems considering the performance-based seismic design philosophy

Author:

Alvarado-Valle Omar E.,Gutierrez-Lopez Aaron,Tolentino Dante,Gaxiola-Camacho J. Ramon

Abstract

AbstractIn this paper, the seismic performance and reliability of steel buildings with Chevron-Braced frames are studied integrating a novel probabilistic approach and the performance-based seismic design concept. The seismic response of models is extracted using response history analyses with the help the commercial software SAP2000. In this sense, three variables associated with the seismic response of the structure are studied: overall lateral displacement, rotation of connections, and inter-story drift. Those responses are evaluated by exciting the structure with eleven characteristic ground motions of the zone with respect to three performance levels: immediate occupancy, life safety, and collapse prevention. Once the seismic response is extracted for every performance level, the reliability of the models is calculated with respect to inter-story drift as described next. First, considering the seismic response in terms of inter-story drift for every ground motion, the associated histogram is constructed. Then, using 13 Probability Density Functions (PDFs), a Chi-square test is performed to identify the best-fitted PDF associated to the histogram of inter-story drift. Afterwards, with the best-fitted PDF of inter-story drift, the probability of failure and reliability index are extracted considering serviceability limits for every performance level. This represents a unique approach to extract the risk of structures subjected to ground motions associated to different performance levels. In addition to the structural reliability, a study about the cost of the structures with and without Chevron braces is developed, and then, it is documented the best option. Finally, based on the results reported in this paper, it is demonstrated that steel buildings with Chevron-braced frames present a better seismic performance than steel moment resisting frames without any bracing system. In summary, overall lateral drifts are reduced between 40 and 60% when Chevron braces are implemented in comparison to steel moment resisting frames without braces. On the other hand, if Chevron bracing systems are not used, i.e., in steel moment resisting frames, the inter-story drifts are about 300% higher than those of steel structures with Chevron braces. Hence, structural damages can be considerably reduced if Chevron-braced frames are implemented in steel structures that may be excited by characteristic ground motions of the zone where they are located.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3