Abstract
AbstractHuman bone marrow mesenchymal stem cells (HBMSCs) has been the gold standard for bone regeneration. However, the low proliferation rate and long doubling time limited its clinical applications. This study aims to compare the bone tissue engineering efficacy of human dental pulp stem cells (HDPSCs) with HBMSCs in 2D, and 3D anorganic bone mineral (ABM) coated with a biomimetic collagen peptide (ABM-P-15) for improving bone-forming speed and efficacy in vitro and in vivo. The multipotential of both HDPSCs and HBMSCs have been compared in vitro. The bone formation of HDPSCs on ABM-P-15 was tested using in vivo model. The osteogenic potential of the cells was confirmed by alkaline phosphatase (ALP) and immunohistological staining for osteogenic markers. Enhanced ALP, collagen, lipid droplet, or glycosaminoglycans production were visible in HDPSCs and HBMSCs after osteogenic, adipogenic and chondrogenic induction. HDPSC showed stronger ALP staining compared to HBMSCs. Confocal images showed more viable HDPSCs on both ABM-P-15 and ABM scaffolds compared to HBMSCs on similar scaffolds. ABM-P-15 enhanced cell attachment/spreading/bridging formation on ABM-P-15 scaffolds and significantly increased quantitative ALP specific activities of the HDPSCs and HBMSCs. After 8 weeks in vivo implantation in diffusion chamber model, the HDPSCs on ABM-P-15 scaffolds showed extensive high organised collagenous matrix formation that was positive for COL-I and OCN compared to ABM alone. In conclusion, the HDPSCs have a higher proliferation rate and better osteogenic capacity, which indicated the potential of combining HDPSCs with ABM-P-15 scaffolds for improving bone regeneration speed and efficacy.
Funder
National Natural Science Foundation of China
Guangdong Medical University
Changzhou Science and Technology Bureau
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Clinical Biochemistry,Biomedical Engineering,Bioengineering,Biotechnology
Reference88 articles.
1. Abdulghani S, Mitchell GR (2019) Biomaterials for in situ tissue regeneration: a review. Biomolecules. https://doi.org/10.3390/biom9110750
2. Ashton BA, Allen TD, Howlett CR, Eaglesom CC, Hattori A, Owen M (1980) Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo. Clin Orthop Relat Res 151:294–307
3. Bandyopadhyay A, Tsuji K, Cox K, Harfe BD, Rosen V, Tabin CJ (2006) Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet 2:e216
4. Barboza EP, de Souza RO, Caúla AL, Neto LG, de Oliveira Caúla F, Duarte MEL (2002) Bone regeneration of localized chronic alveolar defects utilizing cell binding peptide associated with anorganic bovine-derived bone mineral: a clinical and histological study. J Periodontol 73:1153–1159
5. Bellows C, Aubin J, Heersche J (1991) Initiation and progression of mineralization of bone nodules formed in vitro: the role of alkaline phosphatase and organic phosphate. Bone Mineral 14:27–40
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献