Potential of the enzyme laccase for the synthesis and derivatization of antimicrobial compounds

Author:

Hahn Veronika

Abstract

AbstractLaccases [E.C. 1.10.3.2, benzenediol:dioxygen oxidoreductase] can oxidize phenolic substances, e.g. di- and polyphenols, hydroxylated biaryls, aminophenols or aryldiamines. This large substrate spectrum is the basis for various reaction possibilities, which include depolymerization and polymerization reactions, but also the coupling of different substance classes. To catalyze these reactions, laccases demand only atmospheric oxygen and no depletive cofactors. The utilization of mild and environmentally friendly reaction conditions such as room temperature, atmospheric pressure, and the avoidance of organic solvents makes the laccase-mediated reaction a valuable tool in green chemistry for the synthesis of biologically active compounds such as antimicrobial substances. In particular, the production of novel antibiotics becomes vital due to the evolution of antibiotic resistances amongst bacteria and fungi. Therefore, laccase-mediated homo- and heteromolecular coupling reactions result in derivatized or newly synthesized antibiotics. The coupling or derivatization of biologically active compounds or its basic structures may allow the development of novel pharmaceuticals, as well as the improvement of efficacy or tolerability of an already applied drug. Furthermore, by the laccase-mediated coupling of two different active substances a synergistic effect may be possible. However, the coupling of compounds that have no described efficacy can lead to biologically active substances by means of laccase. The review summarizes laccase-mediated reactions for the synthesis of antimicrobial compounds valuable for medical purposes. In particular, reactions with two different reaction partners were shown in detail. In addition, studies with in vitro and in vivo experimental data for the confirmation of the antibacterial and/or antifungal efficacy of the products, synthesized with laccase, were of special interest. Analyses of the structure–activity relationship confirm the great potential of the novel compounds. These substances may represent not only a value for pharmaceutical and chemical industry, but also for other industries due to a possible functionalization of surfaces such as wood or textiles.

Funder

Leibniz-Institut für Plasmaforschung und Technologie e.V. (INP)

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,General Medicine,Physiology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3