Growth ability, carbon source utilization and biochemical features of the new specie Zalaria obscura

Author:

Campana Raffaella,Palma Francesco,Sisti Maurizio

Abstract

AbstractThis research investigated the characteristics of Zalaria obscura LS31012019 in terms of growth ability in different media (SDB, YPD and TSB) and temperatures (22, 25 and 37 °C), utilization of several carbon sources (Glucose, Fructose, Lactose, Sucrose, Xylose, Glycerol and Mannitol at 5, 2 and 1%) and several biochemical features (total protein content, Glutathione, pigments), in comparison with those of the phylogenetically related Aureobasidium pullulans ATCC 15233. The best growth of Z. obscura LS31012019 was obtained in YPD at 25 °C with the highest OD value (0.45) after 144 h of incubation, similar to that of A. pullulans ATCC 15233 (0.48). Glucose resulted the preferred carbon source for both the considered yeasts but also sucrose resulted in efficacy supporting the growth of Z. obscura LS31012019 and A. pullulans ATCC 15233, for their ability in converting sucrose to glucose and fructose and the latter into glucose. Interestingly, Z. obscura LS31012019 utilized also glycerol and mannitol. The biochemical analysis showed the similarity of protein profile in Z. obscura LS31012019 and A. pullulans ATCC 15233 (from 90 to 20 kDa) and a reduced GSH content (0.321 and 0.233 µmol/mg). The pigments extraction with hexane generated a yellow oleaginous pellet in both the strains, while a yellow solid matrix more intensely coloured in A. pullulans ATTC 15233 was visible with the following solvent extractions. Overall, our data showed that Z. obscura LS31012019 can grow in different media and temperatures and utilize carbon sources apart from glucose and sucrose, shifting to a non-fermentative metabolism. These results improve the information regarding the characteristics of Z. obscura, opening a new field of investigation for the possible application of new species of black yeasts in human application.

Funder

Università degli Studi di Urbino Carlo Bo

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,General Medicine,Physiology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3