Correlating the succession of microbial communities from Nigerian soils to petroleum biodegradation

Author:

Iturbe-Espinoza Paul,Bonte Matthijs,Weedon James T,Braster Martin,Brandt Bernd W,van Spanning Rob JM

Abstract

AbstractWhilst biodegradation of different hydrocarbon components has been widely demonstrated to occur by specialist oil-degrading bacteria, less is known about the impact on microbial communities as a function of oil composition by comparing the biodegradation of chemically complex fuels to synthetic products. The objectives of this study were (i) to assess the biodegradation capacity and succession of microbial communities isolated from Nigerian soils in media with crude oil or synthetic oil as sole sources of carbon and energy, and (ii) to assess the temporal variability of the microbial community size. Community profiling was done using 16 S rRNA gene amplicon sequencing (Illumina), and oil profiling using gas chromatography. The biodegradation of natural and synthetic oil differed probably due to the content of sulfur that may interfere with the biodegradation of hydrocarbons. Both alkanes and PAHs in the natural oil were biodegraded faster than in the synthetic oil. Variable community responses were observed during the degradation of alkanes and more simple aromatic compounds, but at later phases of growth they became more homogeneous. The degradation capacity and the size of the community from the more-contaminated soil were higher than those from the less-contaminated soil. Six abundant organisms isolated from the cultures were found to biodegrade oil molecules in pure cultures. Ultimately, this knowledge may contribute to a better understanding of how to improve the biodegradation of crude oil by optimizing culturing conditions through inoculation or bioaugmentation of specific bacteria during ex-situ biodegradation such as biodigesters or landfarming.

Funder

FONDECYT-CONCYTEC

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,General Medicine,Physiology,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3