Abstract
Abstract
Superoxide dismutase (SOD) is an acidic metalloenzyme that scavenges free radicals produced by endogenous and exogenous substances. In the present study, the tissue distribution of the superoxide dismutase HdhCu/Zn-SOD was investigated in Haliotis discus hannai Ino. The expression profile after lipopolysaccharide (LPS) challenge was determined using quantitative real-time polymerase chain reaction (qPCR). To study the antioxidant activity of a recombinant HdhCu/Zn-SOD protein, the HdhCu/Zn-SOD gene was cloned into the pPIC9K vector and transformed into the Pichia pastoris GS115 strain by electroporation. After induction by methanol, the recombinant product was purified using immobilized metal affinity chromatography and confirmed using mass spectrometry. The optimal expression conditions were determined to be incubation with 0.5% methanol at pH 6.0, resulting in a stable expressed product with the molecular weight of approximately 17 kDa and 21 kDa. The enzymatic activity of HdhCu/Zn-SOD consistently increased with increasing Cu2+ concentrations and showed good thermal stability. Recombinant HdhCu/Zn-SOD showed a strong ability to scavenge superoxide anions and hydroxyl radicals and protected L929 cells against the toxicity caused by H2O2 through its in vitro antioxidant activity. The heterologous expression of HdhCu/Zn-SOD in P. pastoris and the antioxidant activity of this enzyme are reported for the first time.
Graphic abstract
Funder
Natural Science Foundation of Fujian Province
the National Marine Public Welfare Research Project of China
the Open Program of the Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,General Medicine,Physiology,Biotechnology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献