Two-Year Preclinical Evaluation of Long-Term Absorbable Poly-4-hydroxybutyrate Scaffold for Surgical Correction of Pelvic Organ Prolapse

Author:

Guler ZelihaORCID,Kaestner Lisa Ann,Vodegel Eva,Ras Lamees,Jeffrey Stephen,Roovers Jan Paul

Abstract

Abstract Introduction and hypothesis Fully absorbable implants may be an alternative to permanent meshes in the correction pf pelvic organ prolapse (POP) as they may reduce adverse events by promoting tissue regeneration and collagen metabolism. This study was aimed at evaluating the long-term host and biomechanical response to a fully absorbable poly-4-hydroxybutyrate (P4HB) scaffold in comparison with polypropylene (PP) mesh. Methods Poly-4-hydroxybutyrate scaffold (n = 16) and PP mesh (n = 16) were surgically implanted in the posterior vaginal wall of parous female Dohne Merino sheep. Vaginal explants were evaluated in terms of gross necropsy, host response (immune response, collagen deposition, tissue regeneration), biomechanics, and degradation of P4HB at 12 and 24 months post-implantation. Results Gross necropsy revealed no infection or fluid collection using P4HB or PP. At 12 months, exposures were observed with both P4HB (3 out of 8) and PP (4 out of 8), whereas at 24 months, exposures were observed only with PP (4 out of 8). The tensile stiffness of the P4HB explants was maintained over time despite complete absorption of P4HB. The collagen amount of the vaginal tissue after P4HB implantation increased over time and was significantly higher than PP at 24 months. P4HB scaffolds exhibited significantly lower myofibroblast differentiation than PP meshes at 24 months. Conclusions The P4HB scaffold allowed for gradual load transfer to the vaginal wall and resulted in mechanically self-sufficient tissue. P4HB scaffold had a more favorable host response than PP mesh, with higher collagen content, lower myofibroblastic differentiation, and no exposures at 24 months. P4HB scaffolds have potential as an alternative to permanent implants in treating POP.

Funder

Tepha Inc.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3