Abstract
Abstract
The Ostrogradsky theorem states that any classical Lagrangian that contains time derivatives higher than the first order and is nondegenerate with respect to the highest-order derivatives leads to an unbounded Hamiltonian which linearly depends on the canonical momenta. Recently, the original theorem has been generalized to nondegeneracy with respect to non-highest-order derivatives. These theorems have been playing a central role in construction of sensible higher-derivative theories. We explore quantization of such non-degenerate theories, and prove that Hamiltonian is still unbounded at the level of quantum field theory.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference8 articles.
1. M. Ostrogradsky, Mémoires sur les équations différentielles, relatives au problème des isopérimètres, Mem. Acad. St. Petersbourg 6 (1850) 385 [INSPIRE].
2. R.P. Woodard, Ostrogradsky’s theorem on Hamiltonian instability, Scholarpedia 10 (2015) 32243 [arXiv:1506.02210] [INSPIRE].
3. H. Motohashi and T. Suyama, Third order equations of motion and the Ostrogradsky instability, Phys. Rev. D 91 (2015) 085009 [arXiv:1411.3721] [INSPIRE].
4. D. Langlois and K. Noui, Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski instability, JCAP 02 (2016) 034 [arXiv:1510.06930] [INSPIRE].
5. H. Motohashi, K. Noui, T. Suyama, M. Yamaguchi and D. Langlois, Healthy degenerate theories with higher derivatives, JCAP 07 (2016) 033 [arXiv:1603.09355] [INSPIRE].
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献