Metric approach to a $$ \mathrm{T}\overline{\mathrm{T}} $$-like deformation in arbitrary dimensions

Author:

Conti Riccardo,Romano Jacopo,Tateo Roberto

Abstract

Abstract We consider a one-parameter family of composite fields — bi-linear in the components of the stress-energy tensor — which generalise the $$ \mathrm{T}\overline{\mathrm{T}} $$ T T ¯ operator to arbitrary space-time dimension d ≥ 2. We show that they induce a deformation of the classical action which is equivalent — at the level of the dynamics — to a field-dependent modification of the background metric tensor according to a specific flow equation. Even though the starting point is the flat space, the deformed metric is generally curved for any d > 2, thus implying that the corresponding deformation can not be interpreted as a coordinate transformation. The central part of the paper is devoted to the development of a recursive algorithm to compute the coefficients of the power series expansion of the solution to the metric flow equation. We show that, under some quite restrictive assumptions on the stress-energy tensor, the power series yields an exact solution. Finally, we consider a class of theories in d = 4 whose stress-energy tensor fulfils the assumptions above mentioned, namely the family of abelian gauge theories in d = 4. For such theories, we obtain the exact expression of the deformed metric and the vierbein. In particular, the latter result implies that ModMax theory in a specific curved space is dynamically equivalent to its Born-Infeld-like extension in flat space. We also discuss a dimensional reduction of the latter theories from d = 4 to d = 2 in which an interesting marginal deformation of d = 2 field theories emerges.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3