Abstract
Abstract
Multi-component dark matter scenarios are studied in the model with U(1)X dark gauge symmetry that is broken into its product subgroup Z2 × Z3 á la Krauss-Wilczek mechanism. In this setup, there exist two types of dark matter fields, X and Y, distinguished by different Z2 × Z3 charges. The real and imaginary parts of the Z2-charged field, XR and XI, get different masses from the U(1)X symmetry breaking. The field Y, which is another dark matter candidate due to the unbroken Z3 symmetry, belongs to the Strongly Interacting Massive Particle (SIMP)-type dark matter. Both XI and XR may contribute to Y’s 3 → 2 annihilation processes, opening a new class of SIMP models with a local dark gauge symmetry. Depending on the mass difference between XI and XR, we have either two-component or three-component dark matter scenarios. In particular two- or three-component SIMP scenarios can be realised not only for small mass difference between X and Y, but also for large mass hierarchy between them, which is a new and unique feature of the present model. We consider both theoretical and experimental constraints, and present four case studies of the multi-component dark matter scenarios.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Reopening the
Z
portal with semi-annihilations;Physical Review D;2024-08-29
2. Singlet Dirac dark matter streamlined;Journal of Cosmology and Astroparticle Physics;2024-06-01
3. Dark SU(2)→Z3 × Z2 gauge symmetry;Physics Letters B;2023-07
4. The Z7 model of three-component scalar dark matter;Journal of High Energy Physics;2023-03-15
5. Z
3 scalar dark matter with strong positron fluxes;Journal of Cosmology and Astroparticle Physics;2023-02-01