A multi-component SIMP model with U(1)X → Z2 × Z3

Author:

Choi Soo-Min,Kim JinsuORCID,Ko Pyungwon,Li Jinmian

Abstract

Abstract Multi-component dark matter scenarios are studied in the model with U(1)X dark gauge symmetry that is broken into its product subgroup Z2 × Z3 á la Krauss-Wilczek mechanism. In this setup, there exist two types of dark matter fields, X and Y, distinguished by different Z2 × Z3 charges. The real and imaginary parts of the Z2-charged field, XR and XI, get different masses from the U(1)X symmetry breaking. The field Y, which is another dark matter candidate due to the unbroken Z3 symmetry, belongs to the Strongly Interacting Massive Particle (SIMP)-type dark matter. Both XI and XR may contribute to Y’s 3 → 2 annihilation processes, opening a new class of SIMP models with a local dark gauge symmetry. Depending on the mass difference between XI and XR, we have either two-component or three-component dark matter scenarios. In particular two- or three-component SIMP scenarios can be realised not only for small mass difference between X and Y, but also for large mass hierarchy between them, which is a new and unique feature of the present model. We consider both theoretical and experimental constraints, and present four case studies of the multi-component dark matter scenarios.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reopening the Z portal with semi-annihilations;Physical Review D;2024-08-29

2. Singlet Dirac dark matter streamlined;Journal of Cosmology and Astroparticle Physics;2024-06-01

3. Dark SU(2)→Z3 × Z2 gauge symmetry;Physics Letters B;2023-07

4. The Z7 model of three-component scalar dark matter;Journal of High Energy Physics;2023-03-15

5. Z 3 scalar dark matter with strong positron fluxes;Journal of Cosmology and Astroparticle Physics;2023-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3