Abstract
Abstract
A central feature of scattering amplitudes in gravity or gauge theory is the existence of a variety of energetically soft theorems which put constraints on the amplitudes. Celestial amplitudes which are obtained from momentum-space amplitudes by a Mellin transform over the external particle energies cannot obey the usual energetically soft theorems. Instead, the symmetries of the celestial sphere imply that the scattering of conformally soft particles whose conformal weights under the 4D Lorentz group SL(2, ℂ) are taken to zero obey special relations. Such conformally soft theorems have recently been found for gauge theory. Here, I show conformally soft factorization of celestial amplitudes for gravity and identify it as the celestial analogue of Weinberg’s soft graviton theorem.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献