The microgravity enhanced polymer-mediated siRNA gene silence by improving cellular uptake

Author:

Yang Tongren,Yu Chanchan,Wang Changrong,Li Chunhui,Zhang Mengjie,Luo Xiaofan,Weng Yuhua,Dong Anjie,Li Xiaoqiong,Deng Yulin,Huang Yuanyu

Abstract

Graphical abstract Abstract Microgravity (MG) effect is a weightlessness phenomenon caused by the distance from the ground or low gravity of other planets outside the earth’s atmosphere. The various effects of MG have been corroborated in human and animal studies and modeled in cell-based analogs. However, the impact of MG on siRNA performance remains to be elucidated, which is crucial for aerospace medicine. In this study, we prepared nucleic acid nanomicelles (EAASc/siRNA) by using tri-block copolymer of PEG45-PAMA40-P(C7A36-DBA37) (EAASc) and siRNA and explored its working mechanism under simulated microgravity (SMG) condition generated by a random positioning machine (RPM). The binding ability of EAASc to siRNA and silence activity were firstly confirmed in normal gravity (NG) environment. Evaluation of PLK1 mRNA expression revealed that gene inhibition efficiencies were increased by 28.7% (HepG2) and 28.9% (A549) under SMG condition, compared with those under NG condition. In addition, mechanism exploration indicated that morphology and migration capability of cancer cells were significantly changed, the internalization of EAASc/siRNA by cells was magnified when the cells were incubated with RPM. No significant difference was observed regarding the expression profiles of genes involved in RNA interference (RNAi) pathway, including Ago2, Dicer, TRBP, and so on. Taken together, siRNA activity was elevated under SMG condition owning to increased cellular internalization. This study, for the first time to our knowledge, provides valuable theory for development and application of siRNA therapeutic in space in the future.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3