Abstract
AbstractBiomechanical assessments are essential for the understanding of physiological states and the characterization of certain tissue pathologies such as liver cirrhosis. In this work, we showed by the photoacoustic viscoelasticity (PAVE) imaging that obvious mechanical change was also observed in the development of the acute hepatitis owing to the hepatocyte enlargement and intracellular fluid increment, indicating that the PAVE technique can be developed as a supplementary method for detecting acute hepatitis in future. The feasibility of the PAVE imaging is validated by a group of agar phantoms. Furthermore, acute hepatitis pathological animal models were established and imaged ex vivo and in situ by the PAVE technique to demonstrate its capability for the mechanical characterization of acute hepatitis, and the imaging results were consistent with pathological results. The feasibility study of detecting acute hepatitis by the PAVE technique proved that this method has potential to be developed as a clinical biomechanical imaging method to supplement current clinical strategy for liver disease detection.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献