Abstract
AbstractThe surface tension of liquids at high temperatures is generally measured with the well-established oscillating drop method in a contactless environment. However, technical difficulties in surface tension measurements make it hard to apply the oscillating drop method to the aerodynamic levitation (ADL) system, the most reliable levitation technique for liquids with low electrical conductivity. In this study, we developed a novel drop–bounce method that can be used within an ADL system to measure the surface tension of liquids. A levitated molten sample was first dropped onto an inert substrate through a splittable nozzle. The rebounded sample’s oscillatory motion behaved as it would under microgravity conditions during its free-fall, and oscillations were obtained only in the l=2, m=0 mode. Fourier transformation of the oscillation pattern provided resonant frequency of the l=2, m=0 mode and enabled the calculation of the surface tension of the sample under knowledge of its mass. Furthermore, a short experimental duration of less than 50 ms significantly reduced the possibility of surface evaporation in the sample. Our measured surface tension data from 1354 K to 1827 K for gold exhibited a standard deviation of 13.4 mJ/m2 and were consistent with the data published by Egry et al. under microgravity conditions, with a maximum deviation of 1.5% between the two fitted linear equations.
Funder
Japan Atomic Energy Agency
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Physics and Astronomy,General Engineering,Modelling and Simulation
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献