Abstract
AbstractFiddler crabs are abundant, semi-terrestrial crustaceans inhabiting tropical, subtropical and warm temperate coasts worldwide. Some species build above-ground sedimentary structures at or near the opening to their burrows. The functions and shapes of these constructions vary interspecifically and according to the sex of the builder. Here, we compile the dispersed reports on these structures, suggest uniform naming for different shapes, review explanations for their functions and explore associations between the attributes of builders and their structures. We found that 47 fiddler crab species build at least one type (or subtype) of structure, including chimneys, hoods, pillars, semidomes, mudballs, and rims. Sedimentary structures show a strong association with sediment type as well as builder front type, genus and sex, but not with fiddler crab clade. Experimental studies have revealed distinct, sometimes multiple functions for some of these structures (e.g., female attraction, reduction of aggressive behavior and/or landmark orientation); however, most studies have been observational leaving the proposed functions of these structures for many species untested. Both field and laboratory experiments as well as observational studies can help us to better understand these sedimentary structures and their role in fiddler crab behavior and ecology.
Funder
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Fundação de Amparo à Pesquisa do Estado de São Paulo
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Publisher
Springer Science and Business Media LLC
Subject
Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics
Reference117 articles.
1. Atkinson RJA, Eastman LB (2015) Burrow dwelling in Crustacea. In: Thiel M, Watling L (eds) The natural history of the Crustacea lifestyles and feeding biology, vol 2. Oxford University Press, New York, pp 100–140
2. Backwell PRY, Jennions MD, Christy JH, Schober U (1995) Pillar building in the fiddler crab Uca beebei: evidence for a condition-dependent ornament. Behav Ecol Sociobiol 36:185–192
3. Bailey NW (2012) Evolutionary models of extended phenotype. Trends Ecol Evol 27:561–569
4. Basan PB, Frey RW (1977) Actual-palaeontology and neo-ichnology of salt marshes near Sapelo Island, Georgia. Trace Fossils 2:41–70
5. Bell SS, Watzin MC, Coull BC (1978) Biogenic structure and its effect on the spatial heterogeneity of meiofauna in a salt marsh. J Exp Mar Biol Ecol 35:99–107
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献