Abstract
AbstractThe evolution of gametic sex (meiosis and fertilization) and subsequent transition from isogamy (fusion between two equal-sized gametes) to anisogamy (dimorphism into eggs and sperm, namely, females and males) is one of the largest enigmas of evolutionary biology. Meiosis entails genome-dilution cost and anisogamy entails male-production cost. Despite much progress has been made for the maintenance mechanisms of sex, its origination events under such “twofold cost of sex” are still unsolved. Here, we posit two hypothetical scenarios as follows: the “Seesaw Effect” hypothesizes that automictic selfing between isogametes effectively purged deleterious mutations from an organism’s lineage and simultaneously fixed the sex-controlling allele and all other loci (no genome-dilution cost raised). The high relatedness among homoeologous cell colonies led to multicellularization. The “inflated isogamy” hypothesizes that multicellularity increased the reproductive investment of both mates, resulting in excessively large isogametes. This redundancy induced cheating of one sex (evolving to male) to reduce gamete size. However, the other sex (evolving to female) allowed this cheat because her cost did not change. Therefore, anisogamy originated as a kind of commensalism but turned into beneficial for females because it solved the gamete limitation problem inherent to isogamy. Thus, smooth transition to anisogamy had been attained.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献