Experimental tail shortening affects feeding rate depending on original tail length in female barn swallows Hirundo rustica gutturalis

Author:

Hasegawa Masaru,Arai Emi,Nakamura Masahiko

Abstract

AbstractLong tail feathers of the barn swallow Hirundo rustica are a classic example of an intersexually selected trait, but previous aerodynamic analyses indicate that the tail feather is only 10–12 mm longer than the aerodynamic optimum even in the nominate subspecies with long tails. Here, by experimentally shortening female tail length, we studied the feeding cost of long tail feathers in Japanese barn swallows, Hirundo rustica gutturalis, which have ca. 10 mm shorter tails than the nominate subspecies. Female feeding rate was explained by the interaction between treatment and original female tail length: feeding rate decreased with decreasing original female tail length in control, but not in tail-shortened females. Because the interaction term was far from significant in the analysis of female incubation investment, the observed pattern would be specific to feeding rate, which is greatly affected by the aerodynamic properties associated with tail length. Differential allocation of paternal feeding investment was not observed in the current data set. Long tails would be costly at least in short-tailed females, supporting differential costs of ornamentation as predicted by sexual selection theory. Female outermost tail feathers are costly ornamentation in short-tailed Japanese barn swallows.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3