Abstract
AbstractThis study aims to evaluate forecasting properties of classic methodologies (ARCH and GARCH models) in comparison with deep learning methodologies (MLP, RNN, and LSTM architectures) for predicting Bitcoin's volatility. As a new asset class with unique characteristics, Bitcoin's high volatility and structural breaks make forecasting challenging. Based on 2753 observations from 08-09-2014 to 01-05-2022, this study focuses on Bitcoin logarithmic returns. Results show that deep learning methodologies have advantages in terms of forecast quality, although significant computational costs are required. Although both MLP and RNN models produce smoother forecasts with less fluctuation, they fail to capture large spikes. The LSTM architecture, on the other hand, reacts strongly to such movements and tries to adjust its forecast accordingly. To compare forecasting accuracy at different horizons MAPE, MAE metrics are used. Diebold–Mariano tests were conducted to compare the forecast, confirming the superiority of deep learning methodologies. Overall, this study suggests that deep learning methodologies could provide a promising tool for forecasting Bitcoin returns (and therefore volatility), especially for short-term horizons.
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献