AutoPOI: automated points of interest selection for side-channel analysis

Author:

Remmerswaal Mick G. D.,Wu Lichao,Tiran Sébastien,Mentens Nele

Abstract

AbstractTemplate attacks (TAs) are one of the most powerful side-channel analysis (SCA) attacks. The success of such attacks relies on the effectiveness of the profiling model in modeling the leakage information. A crucial step for TA is to select relevant features from the measured traces, often called points of interest (POIs), to extract the leakage information. Previous research indicates that properly selecting the input leaking features could significantly increase the attack performance. However, due to the presence of SCA countermeasures and advancements in technology nodes, such features become increasingly difficult to extract with conventional approaches such as principle component analysis (PCA) and the Sum Of Squared pairwise T-difference-based method (SOST). This work proposes a framework, AutoPOI, based on proximal policy optimization to automatically find, select and scale down features. The input raw features are first grouped into small regions. The best candidates selected by the framework are further scaled down with an online-optimized dimensionality reduction neural network. Finally, the framework rewards the performance of these features with the results of TA. Based on the experimental results, the proposed framework can extract features automatically that lead to comparable state-of-the-art performance on several commonly used datasets.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Two Dimensional SOST: Extract Multi-Dimensional Leakage for Side-Channel Analysis on Cryptosystems;2023 7th International Conference on Cryptography, Security and Privacy (CSP);2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3