1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous systems. Software available from
https://www.tensorflow.org
(2015)
2. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks in principal subspaces. In: Cryptographic Hardware and Embedded Systems—CHES 2006, 8th International Workshop, Yokohama, Japan, October 10–13, 2006. Proceedings, pp. 1–14 (2006)
3. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmentation against jitter-based countermeasures—profiling attacks without pre-processing. In: Cryptographic Hardware and Embedded Systems—CHES 2017—19th International Conference, Taipei, Taiwan, September 25–28, 2017. Proceedings, pp. 45–68 (2017)
4. Carbone, M., Conin, V., Cornelie, M.-A., Dassance, F., Dufresne, G., Dumas, C., Prouff, E., Venelli, A.: Deep learning to evaluate secure RSA implementations. Cryptology ePrint Archive, Report 2019/054 (2019).
https://eprint.iacr.org/2019/054
5. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) Cryptographic Hardware and Embedded Systems—-CHES 2002, 4th International Workshop, Redwood Shores, CA, USA, August 13–15, 2002. Revised Papers, Lecture Notes in Computer Science, vol. 2523, pp. 13–28. Springer (2002)