Regularizers to the rescue: fighting overfitting in deep learning-based side-channel analysis

Author:

Rezaeezade Azade,Batina Lejla

Abstract

AbstractDespite considerable achievements of deep learning-based side-channel analysis, overfitting represents a significant obstacle in finding optimized neural network models. This issue is not unique to the side-channel domain. Regularization techniques are popular solutions to overfitting and have long been used in various domains. At the same time, the works in the side-channel domain show sporadic utilization of regularization techniques. What is more, no systematic study investigates these techniques’ effectiveness. In this paper, we aim to investigate the regularization effectiveness on a randomly selected model, by applying 4 powerful and easy-to-use regularization techniques to 8 combinations of datasets, leakage models, and deep learning topologies. The investigated techniques are $$L_1$$ L 1 , $$L_2$$ L 2 , dropout, and early stopping. Our results show that while all these techniques can improve performance in many cases, $$L_1$$ L 1 and $$L_2$$ L 2 are the most effective. Finally, if training time matters, early stopping is the best technique.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

the Netherlands Organisation for Scientific Research

Publisher

Springer Science and Business Media LLC

Reference41 articles.

1. Kocher, P. C., Jaffe, J., Jun, B.: Differential power analysis. In: M. J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings, Lecture Notes in Computer Science, vol. 1666, pp. 388–397. Springer, (1999)

2. Quisquater, J., Samyde, D.: Electromagnetic analysis (EMA): measures and counter-measures for smart cards. In: I. Attali and T. P. Jensen, editors, Smart Card Programming and Security, International Conference on Research in Smart Cards, E-smart 2001, Cannes, France, September 19-21, 2001, Proceedings, Lecture Notes in Computer Science, vol. 2140, pp. 200–210. Springer, (2001)

3. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks - revealing the secrets of smart cards. Springer, Berlin (2007)

4. Picek, S., Heuser, A., Perin, G., Guilley, S.: Profiled side-channel analysis in the efficient attacker framework. In: Grosso V. and T. Pöppelmann, (eds.) Smart Card Research and Advanced Applications - 20th International Conference, CARDIS 2021, Lübeck, Germany, November 11-12, 2021, Revised Selected Papers, Lecture Notes in Computer Science, vol. 13173, pp. 44–63. Springer, (2021)

5. Chari, S., Rao, J. R., Rohatgi, P.: Template attacks. In: B. S. K. Jr., Ç. K. Koç, and Paar C. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2002, 4th International Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers, Lecture Notes in Computer Science, vol. 2523, pp. 13–28. Springer, (2002)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3