Abstract
AbstractAs a generalization of the fuzzy soft set, interval-valued fuzzy soft set is viewed as a more resilient and powerful tool for dealing with uncertain information. However, the lower or upper membership degree, or both of them, may be missed during the data collection and transmission procedure, which could present challenges for data processing. The existing data filling algorithm for the incomplete interval-valued fuzzy soft sets has low accuracy and the high error rate which leads to wrong filling results and involves subjectivity due to setting the threshold. Therefore, to solve these problems, we propose a KNN data filling algorithm for the incomplete interval-valued fuzzy soft sets. An attribute-based combining rule is first designed to determine whether the data involving incomplete membership degree should be ignored or filled which avoids subjectivity. The incomplete data will be filled according to their K complete nearest neighbors. To verify the validity and feasibility of the method, we conduct the randomized experiments on the real dataset as Shanghai Five-Four Hotel Data set and simulated datasets. The experimental results illustrate that our proposed method outperform the existing method on the average accuracy rate and error rate.
Funder
the National Natural Science Foundation of China
the Gansu Provincial Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,General Computer Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献