A 3D Grouped Convolutional Network Fused with Conditional Random Field and Its Application in Image Multi-target Fine Segmentation

Author:

Yin Jian,Zhou Zhibo,Xu ShaohuaORCID,Yang Ruiping,Liu Kun

Abstract

AbstractAiming at the utilization of adjacent image correlation information in multi-target segmentation of 3D image slices and the optimization of segmentation results, a 3D grouped fully convolutional network fused with conditional random fields (3D-GFCN) is proposed. The model takes fully convolutional network (FCN) as the image segmentation infrastructure, and fully connected conditional random field (FCCRF) as the post-processing tool. It expands the 2D convolution into 3D operations, and uses a shortcut-connection structure to achieve feature fusion of different levels and scales, to realizes the fine-segmentation of 3D image slices. 3D-GFCN uses 3D convolution kernel to correlate the information of 3D image adjacent slices, uses the context correlation and probability exploration mechanism of FCCRF to optimize the segmentation results, and uses the grouped convolution to reduce the model parameters. The dice loss that can ignore the influence of background pixels is used as the training objective function to reduce the influence of the imbalance quantity between background pixels and target pixels. The model can automatically study and focus on target structures of different shapes and sizes in the image, highlight the salient features useful for specific tasks. In the mechanism, it can improve the shortcomings and limitations of the existing image segmentation algorithms, such as insignificant morphological features of the target image, weak correlation of spatial information and discontinuous segmentation results, and improve the accuracy of multi-target segmentation results and learning efficiency. Take abdominal abnormal tissue detection and multi-target segmentation based on 3D computer tomography (CT) images as verification experiments. In the case of small-scale and unbalanced data set, the average Dice coefficient is 88.8%, the Class Pixel Accuracy is 95.3%, and Intersection of Union is 87.8%. Compared with other methods, the performance evaluation index and segmentation accuracy are significantly improved. It shows that the proposed method has good applicability for solving typical multi-target image segmentation problems, such as boundary overlap, offset deformation and low contrast.

Funder

Shandong University of Science and Technology Research Fund

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3