Knowledge Graph Completion with Triple Structure and Text Representation

Author:

Liu Shuang,Qin YuFeng,Xu Man,Kolmanič Simon

Abstract

AbstractKnowledge Graphs (KGs) describe objective facts in the form of RDF triples, each triple contains sufficient semantic information and triple structure information. Knowledge Graph Completion (KGC) is to acquire new knowledge by predicting hidden relationships between entities and adding the new knowledge to the KG. At present, the mainstream KGC approaches only applied the triple structure information or only utilized the semantic information of the text. This paper proposes an approach (TSTR) using BERT and deep neural networks to fully extract the semantic information of knowledge, and designs an aggregated re-ranking scheme that incorporates existing graph embedding approach to learn the structural information of triples. In experiments, the approach achieves state-of-the-art performance on three benchmark datasets, and outperforms recent KGC approaches on sparsely connected datasets.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DeepMCGCN: Multi-channel Deep Graph Neural Networks;International Journal of Computational Intelligence Systems;2024-02-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3