A Proposed Biometric Technique for Improving Iris Recognition

Author:

Farouk Rahmatallah HossamORCID,Mohsen Heba,El-Latif Yasser M. Abd

Abstract

AbstractRecently, the Iris Recognition system has been considered an effective biometric model for recognizing humans. This paper introduces an effective hybrid technique combining edge detection and segmentation, in addition to the convolutional neural network (CNN) and Hamming Distance (HD), for extracting features and classification. The proposed model is applied to different datasets, which are CASIA-Iris-Interval V4, IITD, and MMU. For validating the results of the proposed models, detailed modeling and simulation procedures took place using the mentioned three datasets. A comparison between the obtained results from the current work and published results from open literature was carried out as well. The Proposed Biometric Technique showed desirable recognition accuracies of 94.88% based on applying HD on CASIA, 96.56% based on applying CNN on IITD, and 98.01% based on applying CNN on MMU. The obtained accuracies illustrated the superiority of such a classifier compared to other classifiers used in the published literature.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3