Some Inequalities for LR-$$\left({h}_{1}, {h}_{2}\right)$$-Convex Interval-Valued Functions by Means of Pseudo Order Relation

Author:

Khan Muhammad Bilal,Noor Muhammad Aslam,Noor Khalida Inayat,Nisar Kottakkaran SooppyORCID,Ismail Khadiga Ahmed,Elfasakhany Ashraf

Abstract

AbstractIn both theoretical and applied mathematics fields, integral inequalities play a critical role. Due to the behavior of the definition of convexity, both concepts convexity and integral inequality depend on each other. Therefore, the relationship between convexity and symmetry is strong. Whichever one we work on, we introduced the new class of generalized convex function is known as LR-$$\left({h}_{1}, {h}_{2}\right)$$ h 1 , h 2 -convex interval-valued function (LR-$$\left({h}_{1}, {h}_{2}\right)$$ h 1 , h 2 -IVF) by means of pseudo order relation. Then, we established its strong relationship between Hermite–Hadamard inequality (HH-inequality)) and their variant forms. Besides, we derive the Hermite–Hadamard–Fejér inequality (HH–Fejér inequality)) for LR-$$\left({h}_{1}, {h}_{2}\right)$$ h 1 , h 2 -convex interval-valued functions. Several exceptional cases are also obtained which can be viewed as its applications of this new concept of convexity. Useful examples are given that verify the validity of the theory established in this research. This paper’s concepts and techniques may be the starting point for further research in this field.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,General Computer Science

Reference47 articles.

1. An, Y., Ye, G., Zhao, D., Liu, W.: Hermite-hadamard type inequalities for interval (h1, h2)-convex functions. Mathematics 7(5), 436 (2019)

2. Awan, M.U., Noor, M.A., Noor, K.I., Khan, A.G.: Some new classes of convex functions and inequalities, Miskolc. Math. Notes 19, 77–94 (2018)

3. Breckner, W.W.: Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Räumen. Pupl. Inst. Math. 23, 13–20 (1978)

4. Bombardelli, M., Varošanec, S.: Properties of h-convex functions related to the Hermite–Hadamard–Fejér inequalities. Comput. Math. Appl. 58(9), 1869–1877 (2009)

5. Chalco-Cano, Y., Flores-Franuliˇc, A., Román-Flores, H.: Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative. Comput. Appl. Math. 31, 457–472 (2012)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3