Annealing of Monel 400 Alloy Using Principal Component Analysis, Hyper-parameter Optimization, Machine Learning Techniques, and Multi-objective Particle Swarm Optimization

Author:

Chintakindi Sanjay,Alsamhan Ali,Abidi Mustufa Haider,Kumar Maduri Praveen

Abstract

AbstractThe purpose of this paper is to investigate the effect of the annealing process at 1000 °C on machining parameters using contemporary techniques such as principal component analysis (PCA), hyper-parameter optimization by Optuna, multi-objective particle swarm optimization, and theoretical validation using the machine learning method. Results after annealing show that there will be a reduction in surface roughness values by 19.61%, tool wear by 6.3%, and an increase in the metal removal rate by 14.98%. The PCA results show that the feed is more significant than the depth of cut and speed. The higher value of the composite primary component will represent optimal factors such as speed of 80, feed of 0.2 and depth of cut of 0.3, and values of principal components like surface roughness (Ψ1 = 64.5), tool wear (Ψ2 = 22.3) and metal removal rate (Ψ3 = 13.2). Hyper-parameter optimization represents speed is directly proportional to roughness, tool wear, and metal removal rate, while feed and depth of cut are inversely proportional. The optimization history plot will be steady, and the prediction accuracy will be 96.96%. Machine learning techniques are employed through the Python language using Google Colab. The estimated values from the decision tree method for surface roughness and tool wear predictions using the AdaBoost algorithm match well with actual values. As per MOPSO (multi-objective particle swarm optimization), the predicted responses are as follows; surface roughness (2.5 μm, 100, 02, 0.45), tool wear (0.31 mm, 40, 0.40, 0.60), and MRR (material removal rate) (5145 mm3/min, 100, 0.4, 0.15). As validated by experimentation, there are small variations as the surface roughness varied by 1.56%, tool wear by 6.8%, and MRR by 2.57%.

Funder

Deanship of Scientific Research, King Saud University

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3