Context-Aware News Recommendation System: Incorporating Contextual Information and Collaborative Filtering Techniques

Author:

Alabduljabbar RehamORCID,Almazrou Halah,Aldawod Amaal

Abstract

AbstractWith the increasing volume of news articles available on the internet, personalized news recommendations have become increasingly important for users to discover relevant and interesting news articles. However, traditional recommender systems often fail to capture the dynamic nature of users' preferences and the changing trends in news articles. To address this challenge, this paper proposes a context-aware personalized news recommendation system that incorporates contextual information to enhance the personalization of news recommendations. The approach involves collecting, extracting, exploring, cleaning, and processing a large dataset of news articles from 19 distinct internet news sources, totaling 22,657 English pieces. Four different recommender systems were built using different techniques, including content-based methods such as TF-IDF, Bag-of-Words, and Word2Vec, and a collaborative filtering system based on click behavior. To evaluate the effectiveness of our models, we used a combination of standard comparison metric, including precision and recall, and user feedback. To demonstrate the applicability of the model, a web interface was constructed, and we used RMSE and MAE to evaluate the performance of the collaborative filtering model. In addition, we conducted a comparative study to compare the accuracy of different algorithms with different baseline methods, including random and recency. The evaluation results showed that incorporating contextual information and collaborative filtering can significantly improve the personalization of news recommendations. The study suggests that the collaborative filtering model based on click behavior is the most effective approach, with a mean MAE of 0.0252 and a mean RMSE of 0.0364. The content-based models were also effective approaches for recommending news articles, outperforming the baseline approaches.

Funder

Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3