Recognizing Beehives’ Health Abnormalities Based on Mobile Net Deep Learning Model

Author:

Torky MohamedORCID,Nasr Aida A.,Hassanien Aboul Ella

Abstract

AbstractMonitoring beehive health is a major area of interest within the field of honeybee economy. Ensuring beehives are free of problems such as Varroa destructors and hive beetles, ant problems, and missing queen represents an important challenge in the honeybee industry. Therefore, it is mandatory to have untraditional ways to diagnose these types of honeybee attacks. Artificial Intelligence (AI), computer vision, and the Internet of Things (IoT) can be integrated to develop smart systems for developing warning, prediction, and recognition systems to analyze beehives' health impacts, and conditions as well as monitor bees' behaviors and the environmental conditions inside/outside beehives. In this paper, a deep learning methodology is proposed to recognize the beehives' health abnormalities, Varroa destructors, hive beetles, ant problems, and missing queens. A novel version of the MobileNet model is developed by modifying the front layers of the mobile net model for performing the features selection phase. Three optimization algorithms are utilized and tested on a benchmark dataset of beehives, Adam optimizer, Nesterov-accelerated Adam (Nadam) optimizer, and Stochastic gradient descent (SGD) for selecting the most important features to recognize the three beehive health abnormalities. The implementation and validation results proved the efficiency of the Mobile Net using Adam optimizer in classifying beehives according to the three beehive health abnormalities (Varroa destructor and hive beetles, ant problems, and missing queen) where the model achieved testing accuracy of 95% and testing loss of 35%. In addition, the validation and comparison results confirmed the superiority of Mobile Net using ADAM optimizer in recognizing beehive health abnormalities compared to four deep learning models, Shuffle Net, Resent 50, VGG-19, and Google Net.

Funder

Egyptian Russian University

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3