Multi-agent Gradient-Based Off-Policy Actor-Critic Algorithm for Distributed Reinforcement Learning

Author:

Ren JinengORCID

Abstract

AbstractThis paper proposes a gradient-based multi-agent actor-critic algorithm for off-policy reinforcement learning using importance sampling. Our algorithm is incremental with full gradients, and its complexity per iteration scales linearly with the size of approximation features. Previous multi-agent actor-critic algorithms are limited to the on-policy setting or off-policy emphatic temporal difference (TD) learning and they do not take advantage of the advances in off-policy gradient temporal difference learning (GTD). As a theoretical contribution, we establish that the critic step of the proposed algorithm converges to the TD solution of the projected Bellman equation and the actor step converges to the set of asymptotically stable fixed points. Numerical experiments on the multi-agent generalization of the Boyan’s chain problem show that the proposed approach provides improved performances in terms of stability and convergence rate as compared with the state-of-the-art baseline algorithm.

Funder

Wenzhou University

McGill University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3