STTF: An Efficient Transformer Model for Traffic Congestion Prediction

Author:

Wang Xing,Zeng RuihaoORCID,Zou Fumin,Liao Lyuchao,Huang Faliang

Abstract

AbstractWith the rapid development of economy, the sharp increase in the number of urban cars and the backwardness of urban road construction lead to serious traffic congestion of urban roads. Many scholars have tried their best to solve this problem by predicting traffic congestion. Some traditional models such as linear models and nonlinear models have been proved to have a good prediction effect. However, with the increasing complexity of urban traffic network, these models can no longer meet the higher demand of congestion prediction without considering more complex comprehensive factors, such as the spatio-temporal correlation information between roads. In this paper, we propose a traffic congestion index and devise a new traffic congestion prediction model spatio-temporal transformer (STTF) based on transformer, a deep learning model. The model comprehensively considers the traffic speed of road segments, road network structure, the spatio-temporal correlation between road sections and so on. We embed temporal and spatial information into the model through the embedding layer for learning, and use the spatio-temporal attention module to mine the hidden spatio-temporal information within the data to improve the accuracy of traffic congestion prediction. Experimental results based on real-world datasets demonstrate that the proposed model significantly outperforms state-of-the-art approaches.

Funder

Natural Science Foundation of China

Foreign Cooperation Project of Fujian Provincial Department of Science and Technology

Guangxin Bagui Teams for Innovation and Research

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3