A Local Discrete Text Data Mining Method in High-Dimensional Data Space

Author:

Li JuanORCID,Chen Aiping

Abstract

AbstractAiming at the problems of low accuracy, the long time required, and the large memory consumption of traditional data mining methods, a local discrete text data mining method in high-dimensional data space is proposed. First of all, through the data preparation and preprocessing step, we obtain the minimum data divergence and maximize the data dimension to meet the demand for data in high-dimensional space; second, we use the information gain method to mine the pre-processed discrete text data to establish an objective function to obtain the highest information gain; finally, the objective functions established in data preparation, preprocessing, and mining are combined to form a multi-objective optimization problem to realize local discrete text data mining. The simulation experiment results show that our method effectively reduces the time and improves the accuracy of data mining, where it also consumes less memory, indicating that the multi-objective optimization method can effectively solve multiple problems and effectively improve the data mining effect.

Funder

Jiangsu Provincial Department of Education

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,General Computer Science

Reference35 articles.

1. Zhao, W., Luo, Z.: Web text data mining method based on Bayesian network with fuzzy algorithms. J. Intell. Fuzzy Syst. 38(4), 1–9 (2020)

2. Zhou, J., Guo, Y., Sun, Y., Wu, K.: Data mining method based on rough set and fuzzy neural network. J. Intell. Fuzzy Syst. 38(2–3), 1–9 (2020)

3. Gao, J., Liu, J., Guo, S., Zhang, Q., Wang, X.: A data mining method using deep learning for anomaly detection in cloud computing environment. Math. Probl. Eng. 2020(1), 1–11 (2020)

4. Radhika, A., Masood, M.S.: Effective dimensionality reduction by using soft computing method in data mining techniques. Soft. Comput. 25(2), 1–9 (2021)

5. Christian, M.H.: A community resource for paired genomic and metabolomic data mining. Nat. Chem. Biol. 17(4), 363–340 (2021)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3