Survival Prediction Models for Ovarian Cancer Patients with Lung Metastasis: A Retrospective Cohort Study Based on SEER Database

Author:

Li Dingxi,Zhang Mengli,Zhang Huiying

Abstract

AbstractTo develop a random forest prediction model for the and short- and long-term survival of ovarian cancer patients with lung metastasis. This retrospective cohort study enrolled primary ovarian cancer patients with lung metastasis from the surveillance, epidemiology and end results (SEER) database (2010–2015). All eligible women were randomly divided into the training (n = 1357) and testing set (n = 582). The outcomes were 1-, 3- and 5-year survival. Predictive factors were screened by random forest analysis. The prediction models for predicting the 1-, 3- and 5-year survival were conducted using the training set, and the internal validation was carried out by the testing set. The performance of the models was evaluated with area under the curve (AUC), accuracy, sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV). The subgroups based on the pathological classification further assessed the model’s performance. Totally 1345 patients suffered from death within 5 years. The median follow-up was 7.00 (1.00, 21.00) months. Age at diagnosis, race, marital status, tumor size, tumor grade, TNM stage, brain metastasis, liver metastasis, bone metastasis, etc. were predictors. The AUCs of the prediction model for the 1-, 3-, 5-year survival in the testing set were 0.849 [95% confidence interval (CI): 0.820–0.884], 0.789 (95% CI 0.753–0.826) and 0.763 (95% CI 0.723–0.802), respectively. The results of subgroups on different pathological classifications showed that the AUCs of the model were over 0.7. This random forest model performed well predictive ability for the short- and long-term survival of ovarian cancer patients with lung metastasis, which may be beneficial to identify high-risk individuals for intelligent medical services.

Funder

Joint Construction Project of Medical Science and Technology Research Plan of Henan Province in 2019

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3