Complex Pythagorean Normal Interval-Valued Fuzzy Aggregation Operators for Solving Medical Diagnosis Problem

Author:

Palanikumar Murugan,Kausar Nasreen,Pamucar Dragan,Khan Salma,Shah Mohd AsifORCID

Abstract

AbstractThis paper presents a new methodology for solving multiple-attribute decision-making problems (MADMs) using a complex Pythagorean normal interval-valued fuzzy set (CPNIVFS), which is an extended concept of a complex Pythagorean fuzzy set. Four types of different aggregating operations (AOs), including CPNIVF weighted averaging (CPNIVFWA), CPNIVF weighted geometric (CPNIVFWG), generalized CPNIVFWA (CGPNIVFWA), and generalized CPNIVFWG (CGPNIVFWG), are discussed. The scoring function, accuracy function, and operational laws of the CPNIVFS are defined. Algebraic structures, such as associative, distributive, idempotent, bounded, commutativity, and monotonicity properties, are also shown to be satisfied by complex Pythagorean normal interval-valued fuzzy numbers. Furthermore, an algorithm is proposed to solve the MADM problems based on the defined AOs. The proposed approach is then used for a medical diagnosis problem about brain tumors because computer science and machine tool technology are among the most important components of brain tumor research. The five types of brain tumors diagnosed in these patients are gliomas, meningiomas, metastases, embryonal tumors, and ependymomas. Several types of treatments are available, which are often combined as part of an overall treatment plan. Brain tumors can be treated in various ways, including surgery, radiation therapy, chemotherapy, immunotherapy, and clinical trials. Based on the comparisons and options gathered, the most suitable treatment can be chosen. In this regard, it is evident that the value of the integer $$\Game $$ plays a significant role in determining the model. The candidate models under consideration can be validated by comparing them with the previously proposed ones. The proposed technique is compared with the existing method to demonstrate its superiority and validity, and the results conclude that the former is more reliable and effective than the latter. Finally, the criteria are evaluated by expert assessments to determine the most appropriate options.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3