Prediction of Glioma Grade by Tumor Heterogeneity Radiomic Analysis Based on Multiparametric MRI

Author:

Deng Shuangge,Zhu YongqianORCID

Abstract

AbstractPredicting glioma grade plays a pivotal role in treatment and prognosis. However, several current methods for grading depend on the characteristics of the whole tumor. Predicting grade by analyzing tumor subregions has not been thoroughly investigated, which aims to improve the prediction performance. To predict glioma grade via analysis of tumor heterogeneity with features extracted from tumor subregions, it is mainly divided into four magnetic resonance imaging (MRI) sequences, including T2-weighted (T2), fluid-attenuated inversion recovery (FLAIR), pre-gadolinium T1-weighted (T1), and post-gadolinium T1-weighted methods. This study included the data of 97 patients with glioblastomas and 42 patients with low-grade gliomas before surgery. Three subregions, including enhanced tumor (ET), non-enhanced tumor, and peritumoral edema, were obtained based on segmentation labels generated by the GLISTRBoost algorithm. One hundred radiomic features were extracted from each subregion. Feature selection was performed using the cross-validated recursive feature elimination with a support vector machine (SVM) algorithm. SVM classifiers with grid search were established to predict glioma grade based on unparametric and multiparametric MRI. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of the classifiers, and the performance of the subregions was compared with the results of the whole tumor. In uniparametric analysis, the features from the ET subregion yielded a higher AUC value of 0.8697, 0.8474, and 0.8474 than those of the whole tumor of FLAIR, T1, and T2. In multiparametric analysis, the ET subregion achieved the best performance (AUC = 0.8755), which was higher than the uniparametric results. Radiomic features from the tumor subregion can potentially be used as clinical markers to improve the predictive accuracy of glioma grades.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3